## Answer on Question \#69297-Physics / Other

In a first class lever problem, a 15 kg board which is $l=2.9 \mathrm{~m}$ long is pivoted at the center. A $m_{1}=3.9 \mathrm{~kg}$ object is placed at the left end of the board. The distance (?) from the pivot point on the right a $m_{2}=6.9 \mathrm{~kg}$ object must be placed in order to maintain the system in static equilibrium is $\qquad$ meters.

## Solution

The equilibrium condition

$$
m_{1} g \frac{l}{2}=m_{2} g d .
$$

So

$$
d=\frac{m_{1}}{m_{2}} \times \frac{l}{2}=\frac{3.9}{6.9} \times 1.45=0.8 \mathrm{~m}
$$

Answer: $d=0.8 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

