Answer on Question \#69295-Physics-Other

Two poles (as shown below) are separated by 13.2 m and connected by a massless wire. An object of mass 2.4 kg is placed at the center of the wire and causes the wire to sag 0.7 m . The tension in the wire is \qquad N.

Solution

From the Second Newton's law:

$$
m a_{y}=2 T \sin \alpha-m g
$$

Now

$$
\tan \alpha=\frac{h}{\frac{d}{2}}=\frac{0.7}{\frac{13.2}{2}}=0.106 \rightarrow \alpha=\tan ^{-1} 0.106=6.05^{\circ}
$$

For the equilibrium:

$$
\begin{gathered}
m a_{y}=0 \\
0=2 T \sin \alpha-m g
\end{gathered}
$$

The tension in the wire is

$$
T=\frac{m g}{2 \sin \alpha}=\frac{(2.4)(9.8)}{2 \sin 6.05^{\circ}}=112 \mathrm{~N} .
$$

Answer provided by https://www.AssignmentExpert.com

