Answer on Question \#69294-Physics-Other

A solid cylindrical steel column, ($\mathrm{E}=62.1 \times 109 \mathrm{~N} / \mathrm{m} 2$) is 2.1 m long. If the column compresses $16.9 \mu \mathrm{~m}$ when a $16,000 \mathrm{~kg}$ mass is placed on top, the radius of the column must be \qquad cm. ($1 \times 106 \mu \mathrm{~m}=1 \mathrm{~m}$; $100 \mathrm{~cm}=1 \mathrm{~m}$)

Solution

$$
\begin{array}{r}
e=\frac{F l}{E A} \\
F=m g \\
A=\pi r^{2} \\
e=\frac{m g l}{E \pi r^{2}}
\end{array}
$$

The radius of the column must be

$$
r=\sqrt{\frac{m g l}{\pi e E}}=\sqrt{\frac{(16000)(9.8)(2.1)}{\pi\left(16.9 \cdot 10^{-6}\right)\left(62.1 \cdot 10^{9}\right)}}=0.316 \mathrm{~m}=31.6 \mathrm{~cm} .
$$

Answer provided by https://www.AssignmentExpert.com

