

Answer on Question #69268, Physics / Optics

The sodium lamp used in a physics laboratory gives out light uniformly. Suppose that the lamp uses 40 W. Calculate the magnitude of electric field.

Find: E - ?**Given:**

$$P=40 \text{ W}$$

$$c=3\times 10^8 \text{ m/s}$$

$$\epsilon_0=8.85\times 10^{-12} \text{ F/m}$$

$$\epsilon=1$$

Solution:

Power of electromagnetic radiation:

$$P = w c \quad (1),$$

where w is energy density, c is speed of light in vacuum.

Energy density:

$$w = \epsilon_0 \epsilon E^2 \quad (2),$$

where ϵ_0 is electric constant, ϵ is dielectric constant of the medium, E is magnitude of electric field.

(2) in (1):

$$P = \epsilon_0 \epsilon E^2 c \quad (3)$$

$$\text{Of (3)} \Rightarrow E = \sqrt{\frac{P}{\epsilon_0 \epsilon c}} \quad (4)$$

$$\text{Of (4)} \Rightarrow E=123 \text{ V/m}$$

Answer:

$$123 \text{ V/m}$$

Answer provided by <https://www.AssignmentExpert.com>