Answer on Question #69268, Physics / Optics

The sodium lamp used in a physics laboratory gives out light uniformly. Suppose that the lamp uses 40 W. Calculate the magnitude of electric field.

Find: E - ?

Given:

P=40 W

 $c=3\times10^{8} \text{ m/s}$

 ϵ_0 =8.85×10⁻¹² F/m

ε=1

Solution:

Power of electromagnetic radiation:

$$P = wc (1),$$

where w is energy density, c is speed of light in vacuum.

Energy density:

$$w = \varepsilon_0 \varepsilon E^2$$
 (2),

where ε_0 is electric constant, ε is dielectric constant of the medium, E is magnitude of electric field.

(2) in (1):

$$P=\epsilon_0\epsilon E^2c~\text{(3)}$$

Of (3)
$$\Rightarrow$$
 E = $\sqrt{\frac{P}{\epsilon_0 \epsilon c}}$ (4)

Of (4)
$$\Rightarrow$$
 E=123 V/m

Answer:

123 V/m

Answer provided by https://www.AssignmentExpert.com