An astronomical telescope is used in normal adjustment when looking at the moon. If the objective has $f 1=60 \mathrm{~cm}$ and that of the eye piece is $f 2=1 \mathrm{~cm}$. Suppose the moon has a diameter of $4.50^{*} 10^{\wedge} 6 \mathrm{~m}$ and the distance of the moon from the earth is $4.84^{*} 10^{\wedge} 8 \mathrm{~m}$, find the angle of the image of the moon that is subtended by the astronomers eyes.

Find: β - ?

Given:

$f_{1}=60 \mathrm{~cm}$
$f_{2}=1 \mathrm{~cm}$
$D=4.50 \times 10^{6} \mathrm{~m}$
$a=4.84 \times 10^{8} \mathrm{~m}$

Solution:

Angular diameter of the Moon:
$\delta=2 \arctan \left(\frac{\mathrm{D}}{2 \mathrm{~d}}\right)=2 \arctan \left(\frac{4.5 \times 10^{6}}{2 \times 4.84 \times 10^{8}}\right)=0^{\circ} 32^{\prime}(1)$,
where D is the diameter of the observed object, a is the distance of the observed object from the observer

Of (1) $\Rightarrow \alpha=0.533^{\circ}$
Magnification of the telescope:
$\mathrm{k}=\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}}=\frac{\beta}{\alpha}(2)$,
where f_{1} is the focal length of objective, f_{2} is the focal length of eye piece, α is the angular diameter of the observed object, β is the angular diameter of the observed object in the telescope

Of (2) $\Rightarrow \beta=\frac{\mathrm{f}_{1}}{\mathrm{f}_{2}} \alpha$ (3)
Of (3) $\Rightarrow \beta=31.98^{\circ}$
Answer:
31.98°

