Answer on Question #69262, Physics / Optics

An astronomical telescope is used in normal adjustment when looking at the moon. If the objective has f1=60cm and that of the eye piece is f2=1cm. Suppose the moon has a diameter of $4.50*10^{6}$ m and the distance of the moon from the earth is $4.84*10^{8}$ m, find the angle of the image of the moon that is subtended by the astronomers eyes.

Find: β - ?

Given:

f₁=60cm

f₂=1cm

D=4.50×10⁶ m

a=4.84×10⁸ m

Solution:

Angular diameter of the Moon:

$$\delta = 2 \arctan\left(\frac{D}{2d}\right) = 2 \arctan\left(\frac{4.5 \times 10^6}{2 \times 4.84 \times 10^8}\right) = 0^{\circ} 32'$$
 (1),

where D is the diameter of the observed object, a is the distance of the observed object from the observer

Of (1)
$$\Rightarrow \alpha = 0.533^{\circ}$$

Magnification of the telescope:

$$k=\frac{f_1}{f_2}=\frac{\beta}{\alpha}$$
 (2),

where f_1 is the focal length of objective, f_2 is the focal length of eye piece, α is the angular diameter of the observed object, β is the angular diameter of the observed object in the telescope

Of (2)
$$\Rightarrow \beta = \frac{f_1}{f_2} \alpha$$
 (3)
Of (3) $\Rightarrow \beta=31.98^{\circ}$
Answer:

31.98°

Answer provided by https://www.AssignmentExpert.com