Answer on Question \#69259 Physics / Other

A $m=4.3 \mathrm{~kg}$ object traveling at $v=2.5 \mathrm{~m} / \mathrm{s}$ to the right collides head-on with a $M=3.8 \mathrm{~kg}$ object which is at rest. If the impact is perfectly elastic, the velocity of the 3.8 kg object after the impact is \qquad m / s.

Solution:

The momentum conservation law

$$
m v=m v^{\prime}+M u
$$

The energy conservation law

$$
\frac{m v^{2}}{2}=\frac{m v^{\prime 2}}{2}+\frac{M u^{2}}{2}
$$

So

$$
\begin{gathered}
v^{\prime}=v-\frac{M}{m} u \\
v^{2}=\left(v-\frac{M}{m} u\right)^{2}+\frac{M}{m} u^{2} \\
v^{2}=v^{2}-2 \frac{M}{m} v u+\frac{M^{2}}{m^{2}} u^{2}+\frac{M}{m} u^{2} \\
u\left(\frac{M^{2}}{m^{2}}+\frac{M}{m}\right)=2 \frac{M}{m} v \\
u\left(\frac{M}{m}+1\right)=2 v \\
u=\frac{2 v}{1+\frac{M}{m}}=\frac{2 \times 2.5}{1+\frac{3.8}{4.3}}=2.65 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Answers: $u=2.65 \frac{\mathrm{~m}}{\mathrm{~s}}$.
Answer provided by https://www.AssignmentExpert.com

