Answer on Question \#69223, Physics / Other

A space station of radius 20 m spins so that a person inside it has a sensation of artificial gravity when afloat in space. The rate of spin is chosen to attain. $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$. Calculate the length of the day as seen in the spacecraft through a window.

Solution:

Occupants of the station would experience centripetal acceleration according to the following equation,

$$
a=\frac{\omega^{2}}{r}
$$

where ω is the angular velocity of the station, r is its radius, and a is linear acceleration at any point along its perimeter.

Thus,

$$
\omega=\sqrt{a r}=\sqrt{9.8 \times 20}=14 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

The length of day will be the period of rotation

$$
T=\frac{2 \pi}{\omega}=\frac{2 \pi}{14}=0.45 \mathrm{~s}
$$

Answer: 0.45 s
Answer provided by https://www.AssignmentExpert.com

