Answer on Question \#69219, Physics / Other

An automobile engine develops 60 kW of power when rotating at a rate of 1200 rpm What torque does it deliver ? Draw diagram.

Solution:

The power of a rotating body can be expressed as

$$
P=T \omega=T 2 \pi n_{r p s}=T \pi n_{r p m} / 30
$$

where
$P=\operatorname{power}(W)$
$T=$ torque or moment (Nm)
$\omega=\underline{\text { angular velocity }(\mathrm{rad} / \mathrm{s})}$
$\pi=3.14 .$.
$n_{r p s}=$ rotations per second (rps, 1/s)
$n_{\text {rpm }}=$ rotations per minute (rpm, $1 / \mathrm{min}$)
Thus,

$$
T=\frac{30 P}{\pi n_{r p m}}=\frac{30 \times 60 \times 10^{3}}{\pi \times 1200}=\frac{1500}{\pi}=477.5 \mathrm{Nm}
$$

The graph above shows a torque/speed curve of a typical D.C. motor. Note that torque is inversely proportional to the speed of the output shaft. In other words, there is a tradeoff between how much torque a motor delivers, and how fast the output shaft spins. Motor characteristics are frequently given as two points on this graph:

The stall torque,[Ts], represents the point on the graph at which the torque is a maximum, but the shaft is not rotating.

The no load speed, $\left[\omega_{n}\right]$, is the maximum output speed of the motor (when no torque is applied to the output shaft).

Answer: 477.5 Nm

Source: http://www.engineeringtoolbox.com/angular-velocity-acceleration-power-torqued 1397.html

Answer provided by https://www.AssignmentExpert.com

