

Answer on Question 69218, Physics, Other

Question:

A body of mass 1.5 kg and initial velocity 15 m/s is sliding on a horizontal surface. The coefficient of kinetic friction between the body and the surface is 0.5 . Determine the work done by friction when the body has traversed a distance of 10 m along the surface. Also find the initial and final kinetic energies of the body. Take $g = 10 \text{ m/s}^2$. Draw diagram.

Solution:

a) By the definition of the friction force we have:

$$F_{fr} = \mu_k N = \mu_k mg = 0.5 \cdot 1.5 \text{ kg} \cdot 10 \frac{\text{m}}{\text{s}^2} = 7.5 \text{ N}.$$

Then, we can find the work done by the friction force when the body has traversed a distance of 10 m along the surface:

$$W_{fr} = F_{fr}s = 7.5 \text{ N} \cdot 10 \text{ m} = 75 \text{ J}.$$

b) By the definition of the kinetic energy of the body we have:

$$KE_i = \frac{1}{2}mv_i^2 = \frac{1}{2} \cdot 1.5 \text{ kg} \cdot \left(15 \frac{\text{m}}{\text{s}}\right)^2 = 168.75 \text{ J}.$$

We can find the final kinetic energy of the body from the work-kinetic energy theorem:

$$W = \Delta KE = KE_f - KE_i,$$

$$KE_f = W + KE_i = 75 \text{ J} + 168.75 \text{ J} = 243.75 \text{ J}.$$

Answer:

a) $W_{fr} = 75 \text{ J}$.

b) $KE_i = 168.75 \text{ J}$, $KE_f = 243.75 \text{ J}$.

Answer provided by <https://www.AssignmentExpert.com>