Answer on Question \# 69212, Physics - Mechanics - Relativity :

Question: An object of $m \mathrm{~kg}$ with speed of $\mathrm{v} \mathrm{m} / \mathrm{s}$ strikes a wall at an angle and rebounds at the same speed and same angle. What is the magnitude of the change in momentum of the object.

Solution: Let the object strikes the wall at an angle Θ.
When the object of mass m with a speed v strikes the wall, then momentum will be $P=m v \sin \theta i-m v \cos \theta j$
[i and j are the unit vectors along the direction of x and y direction respectively.]
So, when it rebounds at same speed and same angle, then momentum will be $Q=m v \sin \theta i+m v \cos \theta j$

So, change in momentum $=Q-P=2 m v \cos \Theta j \quad$ [j is unit vector along y direction.]
So , the magnitude of change in momentum is $2 \mathrm{mv} \cos \theta$.
Answer provided by https://www.AssignmentExpert.com

