Answer on Question \#69208 - Physics - Mechanics | Relativity

An ice skater has a moment of inertia of $4.3 \mathrm{~kg} \cdot \mathrm{~m} 2$ when her arms are outstretched. At this time she is spinning at 3.3 revolutions per second (rps). If she pulls in her arms and decreases her moment of inertia to $2.2 \mathrm{~kg} \cdot \mathrm{~m} 2$, how fast will she be spinning?

Solution.

We use the law of conservation of angular momentum:

$$
\begin{aligned}
& j_{1} * \omega_{1}=j_{2} * \omega_{2} ; \quad \omega=2 \pi f ; \quad j_{1} * f_{1}=j_{2} * f_{2} ; \quad f_{2}=\frac{j_{1} * f_{1}}{j_{2}}=\frac{4.3 * 3.3}{2.2}=4.3 * 1.5=6.45 \mathrm{rps} \\
& \\
& \approx 6.5 \mathrm{rps}
\end{aligned}
$$

Answer:

$$
f_{2} \approx 6.5 \mathrm{rps}
$$

