Answer on Question \#69194 Physics / Other

Obtain the expression for the period of rotation of the Earth's satellite at a height h above the Earth.

Solution:

Let us denote
M - mass of Earth, R-radii of Earth, G-gravity constant, m-mass of satellite.
The gravitation force

$$
F=G \frac{m M}{(R+h)^{2}}
$$

The centripetal acceleration

$$
a=\frac{v^{2}}{R+h}
$$

Newton's second law

$$
m a=F
$$

Thus

$$
\frac{m v^{2}}{R+h}=G \frac{m M}{(R+h)^{2}}
$$

The speed of satellite

$$
v^{2}=G \frac{M}{R+h}, \quad v=\sqrt{G \frac{M}{R+h}}
$$

The period of rotation

$$
\begin{gathered}
T=\frac{2 \pi(R+h)}{v} \\
T=\frac{2 \pi(R+h)}{\sqrt{G \frac{M}{R+h}}}=\frac{2 \pi(R+h)^{\frac{3}{2}}}{\sqrt{G M}}
\end{gathered}
$$

Answer: $T=\frac{2 \pi(R+h)^{\frac{3}{2}}}{\sqrt{G M}}$.
Answer provided by https://www.AssignmentExpert.com

