Answer on Question \#69153 Physics / Mechanics | Relativity

The linear density of a vibrating string is $\mu=1.3 \times 10^{\wedge}-4 \mathrm{~kg} / \mathrm{m}$. A transverse wave is propagating on the string and is described by the equation $y(x, t)=0.021 \sin (30 t-x)$ where x and y are in metres and t is in seconds. Calculate the tension in the string.

Solution:

The tension in the string

$$
T=\mu v^{2}
$$

where v is the velocity of propagation of a wave in a string.
Because wave is described by the equation

$$
y(x, t)=0.021 \sin (30 t-x)=A \sin (\omega t-k x)
$$

velocity is

$$
v=\frac{\omega}{k}=\frac{30}{1}=30 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Thus

$$
T=1.3 \times 10^{-4} \times 30^{2}=0.117 \mathrm{~N} .
$$

Answers: 0.117 N
Answer provided by https://www.AssignmentExpert.com

