Answer on Question 69128, Physics, Mechanics | Relativity

Question:

A car travels in a straight line with an average velocity of $80 \mathrm{~km} / \mathrm{h}$ for 2.5 h and then average velocity of $40 \mathrm{~km} / \mathrm{h}$ from 1.5 h .
a) what is the total displacement for the $4 h$ trip?
b) what is the average velocity for the total trip?

Solution:

a) Let's find the total displacement for the $4 h$ trip:

$$
\begin{aligned}
d_{t o t}=d_{1}+ & d_{2}=v_{1} t_{1}+v_{2} t_{2}=80 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot 2.5 \mathrm{~h}+40 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot 1.5 \mathrm{~h}=260 \mathrm{~km}= \\
& =2.6 \cdot 10^{5} \mathrm{~m} .
\end{aligned}
$$

b) By the definition, the average velocity is the total distance traveled divided by the total time (the total distance travelled by the car is equal to the total displacement for the $4 h$ trip):

$$
v_{\text {avg }}=\frac{d_{t o t}}{t_{t o t}}=\frac{260 \mathrm{~km}}{4.0 \mathrm{~h}}=65 \frac{\mathrm{~km}}{\mathrm{~h}} .
$$

Answer:
a) $d_{t o t}=2.6 \cdot 10^{5} \mathrm{~m}$.
b) $v_{\text {avg }}=65 \frac{\mathrm{~km}}{\mathrm{~h}}$.

