Answer on Question \#69100 Physics / Electric Circuits

Two fixed charges A and B of $q=5 \mu \mathrm{C}$ each are separated by a distance of $r=6 \mathrm{~m}$. C is the mid point of the line joining A and B . A charge ' Q ' of $Q=-5 \mu \mathrm{C}$ is shot perpendicular to the line joining A and B through C with a kinetic energy of $K=0.06 \mathrm{~J}$. The charge Q comes to rest at a point D. Calculate the distance CD.

Solution:

The charge of kinetic energy = work done

$$
\Delta K=W=Q\left(\varphi_{1}-\varphi_{2}\right)
$$

At the point C the potential of electric field is

$$
\varphi_{1}=k \frac{q}{\frac{r}{2}}+k \frac{q}{\frac{r}{2}}=\frac{4 k q}{r}
$$

At the point D

$$
\varphi_{2}=k \frac{q}{d}+k \frac{q}{d}=\frac{2 k q}{d}
$$

where $d=\mathrm{AD}=\mathrm{BD}$.
So

$$
\begin{gathered}
\Delta K=Q\left(\frac{4 k q}{r}-\frac{2 k q}{d}\right) \\
\Delta K=2 k q Q\left(\frac{2}{r}-\frac{1}{d}\right) \\
\frac{1}{d}=\frac{2}{r}-\frac{\Delta K}{2 k q Q} \\
d=\frac{1}{\frac{2}{r}-\frac{\Delta K}{2 k q Q}}=\frac{1}{\frac{2}{6}-\frac{-0.06}{2 \times 9 \times 10^{9} \times 5 \times 10^{-6} \times(-5) \times 10^{-6}}}= \\
\frac{1}{\frac{1}{3}-\frac{0.06}{0.450}}=\frac{1}{\frac{1}{3}-\frac{0.4}{3}}=\frac{3}{0.6}=5 \mathrm{~m} .
\end{gathered}
$$

Then $C D=\sqrt{A D^{2}-A C^{2}}=\sqrt{d^{2}-\left(\frac{r}{2}\right)^{2}}=\sqrt{5^{2}-3^{2}}=4 \mathrm{~m}$.
Answer: 4 m.
Answer provided by https://www.AssignmentExpert.com

