

Answer on Question 69084, Physics, Electromagnetism

Question:

A copper wire of diameter 1 mm and length 30 m is connected across a battery of 2 V . Calculate the current density in the wire and drift velocity of the electrons. The resistivity of copper is $1.72 \cdot 10^{-8}\text{ }\Omega \cdot \text{m}$ and $n = 8.0 \cdot 10^{28}\text{ electrons/m}^3$.

Solution:

a) Let's first find the resistance of the copper wire from the formula:

$$R = \rho \frac{l}{A},$$

here, ρ is the resistivity of the copper wire, l is the length of the wire, $A = \frac{\pi d^2}{4}$ is the cross-sectional area of the wire and d is the diameter of the wire.

Then, we get:

$$R = \rho \frac{l}{A} = \rho \frac{4l}{\pi d^2} = 1.72 \cdot 10^{-8}\text{ }\Omega \cdot \text{m} \cdot \frac{4 \cdot 30\text{ m}}{\pi \cdot (1.0 \cdot 10^{-3}\text{ m})^2} = 0.65\text{ }\Omega.$$

Then, from the Ohm's law we can find the current flowing through the copper wire:

$$I = \frac{V}{R} = \frac{2.0\text{ V}}{0.65\text{ }\Omega} = 3.1\text{ A}.$$

Finally, we can find the current density in the wire:

$$J = \frac{I}{A} = \frac{4I}{\pi d^2} = \frac{4 \cdot 3.1\text{ A}}{\pi \cdot (1.0 \cdot 10^{-3}\text{ m})^2} = 3.95 \cdot 10^6 \frac{\text{A}}{\text{m}^2}.$$

b) We can find the drift velocity of the electrons from the formula:

$$v = \frac{I}{nAq},$$

here, I is the current flowing through the wire, n is the number of free electrons per unit volume of the copper wire, A is the cross-sectional area of the wire and q is the charge on each electron.

Then, we get:

$$\begin{aligned}
 v &= \frac{I}{nAq} = \frac{4I}{n\pi d^2 q} = \frac{4 \cdot 3.1 A}{8.0 \cdot 10^{28} \frac{electrons}{m^3} \cdot \pi \cdot (1.0 \cdot 10^{-3} m)^2 \cdot 1.6 \cdot 10^{-19} C} = \\
 &= 3.08 \cdot 10^{-4} \frac{m}{s}.
 \end{aligned}$$

Answer:

a) $J = 3.95 \cdot 10^6 \frac{A}{m^2}$.

b) $v = 3.08 \cdot 10^{-4} \frac{m}{s}$.

Answer provided by <https://www.AssignmentExpert.com>