Answer on Question #69083, Physics / Electromagnetism

A glass of relative permittivity 4 is kept in an external electric field of magnitude 102 Vm-1. Calculate the polarisation vector, molecular/atomic polarisability and the refractive index of the glass.

Solution:

Polarisation vector:

 $\vec{P} = \chi \epsilon_0 \vec{E}$ (1), where χ is the electric susceptibility, ϵ_0 =8.85×10⁻¹² F/m, E is the magnitude of electric field

The relative permittivity of a medium ϵ_r is related to its electric susceptibility, χ :

$$\begin{split} \epsilon_{\rm r} &= 1 + \chi \,(2) \\ \text{Of} \,(2) \Rightarrow \chi = \epsilon_{\rm r} - 1 \,(3) \\ \text{Of} \,(3) \Rightarrow \chi = 4 - 1 = 3 \,(4) \\ \text{Of} \,(1) \Rightarrow \vec{P} &= 3 \times 8.85 \, \times 10^{-12} \, \frac{\text{F}}{\text{m}} \times 10^2 \frac{\text{V}}{\text{m}} = 26.55 \times 10^{-10} \frac{\text{F} \times \text{V}}{\text{m}^2} \end{split}$$

Polarisation vector:

 $\vec{\mathbf{P}} = \mathbf{N}\vec{\mathbf{p}} = \mathbf{N}\alpha\epsilon_{0}\vec{\mathbf{E}}$ (5), where N=6.02×10²³ mol⁻¹, ϵ_{0} =8.85×10⁻¹² F/m, α is atomic polarisability, E is the magnitude of electric field

$$\mathsf{Of}\,(\mathsf{5}) \Rightarrow \alpha = \frac{\mathtt{P}}{\mathtt{Ne}_{\mathtt{Q}}\mathtt{E}}(\mathsf{6})$$

Of (6) $\Rightarrow \alpha$ =0.5×10⁻²³ m³

Refractive index:

 $n=\sqrt{\epsilon_{r}\mu_{r}}$ (7), where ϵ_{r} is the relative permittivity, μ_{r} is the relative permeability

Of (7)
$$\Rightarrow$$
 n = $\sqrt{4 \times 0.99}$ = 1.99

Answer:

polarisation vector: $26.55 \times 10^{-10} \frac{F \times V}{m^2}$

atomic polarisability: 0.5×10⁻²³ m³

refractive index: 1.99

Answer provided by https://www.AssignmentExpert.com