Answer on question

A 100 m long thread carries charges uniformly distributed along its length. An electron, 10 cm away from the centre of the thread along a line perpendicular to the thread experiences an attractive force of $2.7 \times 10-12 \mathrm{~N}$. Calculate the total charge on the thread.

Solution

Look at the picture. First of all we find the force of a half (AC) of the thread.
The electron is placed in point B . Let point A is a small piece of thread with charge $d q=\mu d x, \mu=$ $\frac{Q}{L}$,
μ is a linear density of charge in the thread, Q is a full charge of the tread, L is its length $(100 \mathrm{~m})$. The length of $A B$ is $\sqrt{B C^{2}+(A C-x)^{2}}=\sqrt{0.01+(50-x)^{2}}$, where x is position of point A , $0<x<50$. The direction of resultant force is parallel to $B C$.

The formula for force between the electron and small piece of the thread is

$$
d F=\frac{k e d q}{\sqrt{0.01+(50-x)^{2}}} \cos \widehat{A B C}=\frac{k e \mu(50-x) d x}{0.01+(50-x)^{2}}
$$

The resultant force is

$$
F=2 e \mu k \int_{0}^{50} \frac{(50-x) d x}{0.01+(50-x)^{2}}=\frac{e Q k}{L} \ln \frac{0.01}{2500.01}=-12.43 \frac{e Q k}{L}=2.7 * 10^{-12} \mathrm{~N} \rightarrow
$$

The full charge in the thread

$$
Q=\frac{2.7 * 10^{-12}}{-12.43 * e k} L=\frac{2.7 * 10^{-12} * 100}{12.43 * 1.6 * 10^{-19} * 9 * 10^{9}}=0.015 \mathrm{C}
$$

Answer $Q=0.015 C$

