Answer on Question 69076, Physics, Mechanics, Relativity

Question:

The speed of a car is reduced from $54 \mathrm{~km} / \mathrm{h}$ to $36 \mathrm{~km} / \mathrm{h}$ in a certain time during which it travelled a distance of 125 m . Calculate the acceleration of the car.

Solution:

Let's first convert km / h to m / s :

$$
\begin{aligned}
& v_{i}=54 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \cdot \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=15 \frac{\mathrm{~m}}{\mathrm{~s}}, \\
& v_{f}=36 \frac{\mathrm{~km}}{\mathrm{~h}} \cdot \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \cdot \frac{1 \mathrm{~h}}{3600 \mathrm{~s}}=10 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{aligned}
$$

We can find the acceleration of the car from the kinematic equation:

$$
v_{f}^{2}=v_{i}^{2}+2 a d,
$$

here, v_{i} is the initial velocity of the car, v_{f} is the final velocity of the car, a is the acceleration of the car and d is the distance travelled by the car.

Then, we get:

$$
a=\frac{v_{f}^{2}-v_{i}^{2}}{2 d}=\frac{\left(10 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-\left(15 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2 \cdot 125 \mathrm{~m}}=-0.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

The sign minus indicates that the car decelerates.

Answer:

$a=-0.5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.

