Answer on Question \#69062-Physics-Mechanics-Relativity

1) Two arrows mass 0.1 kg each are shot horizontally with the same speed of $30 \mathrm{~ms}^{\wedge}-1$, one from east and the other from south meeting at a point. Find the magnitude and direction of the total momentum of both arrows.

Solution

The magnitude of total momentum of both arrows is

$$
P=\sqrt{(m v)^{2}+(m v)^{2}}=\sqrt{2} m v=\sqrt{2}(0.1)(30)=4.24 \frac{\mathrm{kgm}}{\mathrm{~s}}
$$

The direction of the total momentum of both arrows is north-west.
2) Two cars $A \& B$ are moving in the same direction along a straight line. Car A has 4 times the momentum and twice the kinetic energy of B.
a) determine the ratio of mass A to B.
b) the ratio of the velocity of A to B is?

Solution

a)

$$
\begin{aligned}
\frac{K_{a}}{K_{b}} & =2=\left(\frac{m_{a}}{m_{b}}\right)\left(\frac{v_{a}}{v_{b}}\right)^{2} \\
\frac{p_{a}}{p_{b}} & =4=\left(\frac{m_{a}}{m_{b}}\right)\left(\frac{v_{a}}{v_{b}}\right) \\
\left(\frac{m_{a}}{m_{b}}\right) & =\frac{\left(\frac{p_{a}}{p_{b}}\right)^{2}}{\frac{K_{a}}{K_{b}}}=\frac{4^{2}}{2}=8 .
\end{aligned}
$$

b)

$$
\left(\frac{v_{a}}{v_{b}}\right)=\frac{\frac{p_{a}}{p_{b}}}{\left(\frac{m_{a}}{m_{b}}\right)}=\frac{4}{8}=\frac{1}{2}
$$

Answer provided by https://www.AssignmentExpert.com

