Answer to Question \#69061, Physics / Mechanics | Relativity

Question:

1) A car starting from rest attains a speed of $120 \mathrm{kmh}^{\wedge}-1$ in 10 seconds, it then continues with this speed for 10 minutes. The acceleration in the second segment is?
2) A simple harmonic oscillator has a period of 0.001 second and an amplitude of 0.4 m . The magnitude of its velocity at the centre of oscillation is?

Solution:

1) In the second segment the car moves with the constant speed, meaning that the acceleration (the change of speed with time) is zero

$$
a=0 \frac{m}{s^{2}}
$$

2) The period of simple harmonic oscillator can be described as

$$
T=2 \pi \sqrt{\frac{m}{k}}
$$

So

$$
k=\frac{4 \pi^{2} m}{T^{2}}
$$

The energy stored in the oscillator can be written as

$$
P=\frac{k x^{2}}{2}=\frac{2 \pi^{2} m}{T^{2}} x^{2}
$$

Where x is the amplitude of the oscillator
On the other hand this energy is equal to the kinetic energy at the center of oscilation, so

$$
\begin{gathered}
K=P \\
\frac{m v^{2}}{2}=\frac{2 \pi^{2} m}{T^{2}} x^{2}
\end{gathered}
$$

And finally

$$
v=\frac{2 \pi}{T} x=2512 \frac{m}{s}
$$

