Answer on Question 69059, Physics, Mechanics, Relativity

Question:

1) A disc rolling along a horizontal plane has a moment of inertia $2.5 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ about its center and a mass of 5 kg . The velocity along the plane is $2 \mathrm{~m} / \mathrm{s}$. If the radius of the disc is 1 m :
a) calculate the angular velocity
b) calculate the total energy of the disc

Solution:

a) We can find the angular velocity of the disc from the relationship between the linear and angular variables:

$$
v=r \omega,
$$

here, v is the linear velocity of the disc, r is the radius of the disk and ω is the angular velocity of the disc.

Then, we get:

$$
\omega=\frac{v}{r}=\frac{2 \frac{\mathrm{~m}}{\mathrm{~s}}}{1 \mathrm{~m}}=2 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

b) The total energy of disc rolling along a horizontal plane consists of the sum of translational kinetic energy and rotational kinetic energy:

$$
K E_{\text {disc }}=K E_{\text {translational }}+K E_{\text {rotational }} .
$$

The translational kinetic energy can be found from the formula:

$$
K E_{\text {translational }}=\frac{1}{2} m v^{2}
$$

here, m is the mass of the disc, v is the linear velocity of the disc.
The rotational kinetic energy can be found from the formula:

$$
K E_{\text {rotational }}=\frac{1}{2} I \omega^{2},
$$

here, $I=2.5 \mathrm{~kg} \cdot \mathrm{~m}^{2}$ is the moment of inertia of the disc about its center, r is the radius of the disk and ω is the angular velocity of the disc.

Then, we get:
$K E_{\text {disc }}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2},=\frac{1}{2} \cdot\left(5 \mathrm{~kg} \cdot\left(2 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}+2.5 \mathrm{~kg} \cdot \mathrm{~m}^{2} \cdot\left(2 \frac{\mathrm{rad}}{\mathrm{s}}\right)^{2}\right)=15 \mathrm{~J}$.

Answer:

a) $\omega=2 \frac{\mathrm{rad}}{\mathrm{s}}$.
b) $K E_{\text {disc }}=15 \mathrm{~J}$.
2) A force $(6 \vec{\imath}+4 \vec{\jmath}-10 \vec{k}) N$ acts tangentially to the circumference of a disc of radius $(2 \vec{\imath}+\vec{\jmath}+3 \vec{k}) m$. Find the torque.

Solution:

By the definition of the torque we get:

$$
\begin{aligned}
\vec{\tau}=\vec{r} \times \vec{F}= & \left|\begin{array}{ccc}
\vec{\imath} & \vec{\jmath} & \vec{k} \\
2 & 1 & 3 \\
6 & 4 & -10
\end{array}\right|=\vec{\imath} \cdot\left|\begin{array}{cc}
1 & 3 \\
4 & -10
\end{array}\right|-\vec{\jmath} \cdot\left|\begin{array}{cc}
2 & 3 \\
6 & -10
\end{array}\right|+\vec{k} \cdot\left|\begin{array}{cc}
2 & 1 \\
6 & 4
\end{array}\right|= \\
& =(-10-4 \cdot 3) \vec{\imath}-(2 \cdot(-10)-6 \cdot 3) \vec{\jmath}+(2 \cdot 4-6) \vec{k}= \\
& =(-22 \vec{\imath}+38 \vec{\jmath}+2 \vec{k}) N \cdot m .
\end{aligned}
$$

Also, we can find the magnitude of the torque from the Pythagorean theorem:

$$
\tau=\sqrt{\tau_{x}^{2}+\tau_{y}^{2}+\tau_{z}^{2}}=\sqrt{(-22 N \cdot m)^{2}+(38 N \cdot m)^{2}+(2 N \cdot m)^{2}}=43.95 N .
$$

Answer:

$\vec{\tau}=(-22 \vec{\imath}+38 \vec{\jmath}+2 \vec{k}) N \cdot m$.
The magnitude of the torque is $\tau=43.95 \mathrm{~N}$.

