Answer on Question \#69051, Physics / Other
Question:
A stationary elevator and its contents have a combined mass of 2000 kg . The elevator is suspended by a single cable. (Assume 3 significant digits.)
(a) Draw a free-body diagram of the elevator and calculate the values of all the forces that are acting on it, when at rest.
(b) If the elevator is ascending at a speed of $4.0 \mathrm{~m} / \mathrm{s}$, what are the values of the forces acting at this point?
(c) If the elevator is descending at $4.0 \mathrm{~m} / \mathrm{s} 2$ what are the values of all the forces acting at this point?

Answer:
(a)

At rest: $m g=T=2000 * 9.8=19.6 * 10^{3} N=1.96 * 10^{4} N$ - cable tension/gravity force
(b)

According to $2^{\text {nd }}$ Newton's law:
$T-m g=m a \rightarrow T=m(g+a)=2000 *(9,8+4)=2.76 * 10^{4} N-$ cable tension
$m g=1.96 * 10^{4} N-$ gravity force
(c)

According to $2^{\text {nd }}$ Newton's law: $m g-T=m a \rightarrow T=m(g-a)$ $T=2000 *(9,8-4)=1.16 * 10^{4} N-$ cable tension $m g=2.76 * 10^{4} N-$ gravity force

Answer provided by https://www.AssignmentExpert.com

