

Answer on Question 69049, Physics, Mechanics | Relativity

Question:

A train travels first 30 km at uniform speed of 30 km/h . How fast must the train should travel next 90 km so as to have the average speed of 60 km/h ?

Solution:

By the definition, the average speed is the total distance traveled divided by the total time:

$$v_{avg} = \frac{d_{tot}}{t_{tot}}.$$

It is obvious that the total distance is equal to

$$d_{tot} = d_1 + d_2 = 30 \text{ km} + 90 \text{ km} = 120 \text{ km}.$$

Let's find the time that the train needs to travel first 30 km at 30 km/h :

$$t_1 = \frac{d_1}{v_1} = \frac{30 \text{ km}}{30 \frac{\text{km}}{\text{h}}} = 1.0 \text{ h}.$$

Then, we can find the total time for the train's trip:

$$t_{tot} = t_1 + t_2 = 1.0 \text{ h} + t_2.$$

Substituting d_{tot} and t_{tot} into the formula for the average speed, we get:

$$60 \frac{\text{km}}{\text{h}} = \frac{120 \text{ km}}{1.0 \text{ h} + t_2}.$$

From this formula, we can find the time t_2 that the train needs to travel next 90 km at speed v_2 in order to have the average speed of 60 km/h for the entire journey:

$$60 \frac{\text{km}}{\text{h}} \cdot (1.0 \text{ h} + t_2) = 120 \text{ km},$$

$$1.0 \text{ h} + t_2 = 2.0 \text{ h},$$

$$t_2 = 1.0 \text{ h}.$$

Finally, we can find how fast the train must travel next 90 km in order to have the average speed of 60 km/h for the entire journey:

$$v_2 = \frac{d_2}{t_2} = \frac{90 \text{ km}}{1.0 \text{ h}} = 90 \frac{\text{km}}{\text{h}}.$$

Answer:

$$v_2 = 90 \frac{\text{km}}{\text{h}}.$$