Answer on Question \# 69004- Physics - Mechanics - Relativity :

Question: An electron microscope accelerates an electron (mass of an electron is
$9.11 \times 10^{-31} \mathrm{~kg}$) from rest to $2.8 \times 10^{7} \mathrm{~m} / \mathrm{s}$ in a distance of 2.80 cm .
(a) How much work is done on the electron?
(b) What is the average force on the electron?

Solution: According to work energy theorem,
Work done (W) = Change in kinetic energy

$$
\begin{array}{ll}
=\frac{1}{2} \mathrm{mv}_{\mathrm{f}}^{2}-\frac{1}{2} \mathrm{mv}_{\mathrm{i}}^{2} & v_{f}=\text { final velocity }=2.8 \times 10^{7} \mathrm{~m} / \mathrm{s} \\
=\frac{1}{2} \mathrm{mv}_{\mathrm{f}}^{2} & \& v_{i}=\text { initial velocity }=0 \mathrm{~m} / \mathrm{s} . \\
=\frac{1}{2} \times 9.11 \times 10^{-31} \times\left(2.8 \times 10^{7}\right)^{2} & \\
=35.71 \times 10^{-17} \text { Joule. } &
\end{array}
$$

Now,

$$
\begin{aligned}
& \text { Work done }=\text { Force } \times \text { Displacement } \\
& \begin{aligned}
& \text { Or, Force }=\frac{\text { Work done }}{\text { Displacement }} \\
& \begin{aligned}
\text { Or, Force } & =\frac{35.71 \times 10^{-17}}{0.028} \\
& =1.275 \times 10^{-14} \text { Newton. }
\end{aligned} \quad \text { Distance }=2.80 \mathrm{~cm}=0.028 \mathrm{~m} .
\end{aligned}
\end{aligned}
$$

Answer: a. So, work done on the electron $=35.71 \times 10^{-17}$ Joule .
b. Average force on the electron $=1.275 \times 10^{-14}$ Newton.

Answer provided by https://www.AssignmentExpert.com

