Answer on Question # 69004- Physics - Mechanics - Relativity :

Question: An electron microscope accelerates an electron (mass of an electron is

 v_f = final velocity =2.8 x 10⁷ m/s

& v_i = initial velocity = 0 m/s.

- 9.11 x 10^{-31} kg) from rest to 2.8 x 10^7 m/s in a distance of 2.80 cm.
- (a) How much work is done on the electron?
- (b) What is the average force on the electron?

Solution: According to work energy theorem,

Work done (W) = Change in kinetic energy

$$= \frac{1}{2} mv_{f}^{2} - \frac{1}{2} mv_{i}^{2}$$

$$= \frac{1}{2} mv_{f}^{2}$$

$$= \frac{1}{2} x 9.11 \times 10^{-31} \times (2.8 \times 10^{7})^{2}$$

$$= 35.71 \times 10^{-17} \text{ Joule.}$$

Now,

Work done = Force x Displacement Or, Force = $\frac{\text{Work done}}{\text{Displacement}}$ Or, Force = $\frac{35.71 \times 10^{-17}}{0.028}$ = 1.275 x 10⁻¹⁴ Newton.

Answer: a. So, work done on the electron = 35.71×10^{-17} Joule.

b. Average force on the electron = 1.275×10^{-14} Newton.

Answer provided by https://www.AssignmentExpert.com