

Answer on Question #68969 – Physics | Molecular Physics

1. A sample of krypton gas at a pressure of 1.01 atm and a temperature of 29.8 °C, occupies a volume of 11.7 liters. If the gas is compressed at constant temperature to a volume of 6.67 liters, the pressure of the gas sample will be ___ atm.

Solution:

Given:

$P(Kr)=1.01 \text{ atm}$

$T=29.8^\circ\text{C}$

$V=11.7 \text{ l}$

$V_1=6.67 \text{ l}$

$T=\text{const}$

$P_1=?$

$$\frac{PV}{T} = \frac{P_1V_1}{T_1}, \text{ if } T = \text{const, then:}$$

$$PV = P_1V_1, \text{ where } P_1 = \frac{PV}{V_1},$$

$$P_1 = \frac{1.01 \cdot 11.7}{6.67} = 1.77 \text{ atm.}$$

Answer: 1.77 atm.

2. A sample of neon gas at a pressure of 0.963 atm and a temperature of 23.5 °C, occupies a volume of 621 mL. If the gas is allowed to expand at constant temperature until its pressure is 0.660 atm, the volume of the gas sample will be mL.

Solution:

Given:

$P(Ne)=0.963 \text{ atm}$

$T=23.5^\circ\text{C}$

$V=621 \text{ ml}$

$P_1=0.660 \text{ atm}$

$T=\text{const}$

$V_1=?$

$$\frac{PV}{T} = \frac{P_1V_1}{T_1}, \text{ if } T = \text{const, then:}$$

$$PV = P_1V_1, \text{ where } V_1 = \frac{PV}{P_1}$$

$$V_1 = \frac{0.963 \cdot 621}{0.66} = 906 \text{ ml.}$$

Answer: 906 ml.

3. A sample of krypton gas at a pressure of 800 mm Hg and a temperature of 32 °C, occupies a volume of 14.8 liters. If the gas is cooled at constant pressure to a temperature of 6 °C, the volume of the gas sample will be L.

Solution:

Given:

P(Ne)= 800 mm Hg

T = 32°C

V = 14.8 l

T₁ = 6°C

P = const

V₁?

$$\frac{PV}{T} = \frac{P_1V_1}{T_1}, \text{ if } P = \text{const, then:}$$

$$\frac{V}{T} = \frac{V_1}{T_1}, \text{ where } V_1 = \frac{VT_1}{T},$$

$$T_1 = 32 + 273 = 305 \text{ K}, T = 6 + 273 = 279 \text{ K}$$

$$V_1 = \frac{14.8 \cdot 305}{279} = 13.5 \text{ l.}$$

Answer: 13.5 l.

4. A sample of neon gas at a pressure of 0.782 atm and a temperature of 244 °C, occupies a volume of 558 mL. If the gas is heated at constant pressure until its volume is 727 mL, the temperature of the gas sample will be °C.

Solution:

Given:

P(Ne)=0.782 atm

T=244°C

V=558 ml

V₁ = 727 ml

P = const

T₁?

$$\frac{PV}{T} = \frac{P_1V_1}{T_1}, \text{ if } P = \text{const, then:}$$

$$\frac{V}{T} = \frac{V_1}{T_1}, \text{ where } T_1 = \frac{TV_1}{V},$$

$$T = 244 + 273 = 517 \text{ K},$$

$$T_1 = \frac{727 \cdot 517}{558} = 673 \text{ K},$$

$$T_1 = 673 - 273 = 400 \text{ °C.}$$

Answer: 400 °C.