Answer to Question \#68962

Question: Find the shortest length L for a steel column with pinned ends having a cross sectional area of $60 \times 100 \mathrm{~mm}$, for which the elastic Euler formula applies. Let $\mathrm{E}=200 \mathrm{GPa}$ and assume proportional limit to be 250 MPa
$a=60 \mathrm{~mm}=0.06 \mathrm{~m}$
$b=100 \mathrm{~mm}=0.1 \mathrm{~m}$
$\sigma_{c}=250 M P a=250 * 10^{6} \mathrm{~Pa}$
$K=1$ - column effective lengths factor for a 2 side pinned case

Solution: The critical force load on the column

$$
F=S \sigma_{c}=a b \sigma_{c}
$$

On the other hand

$$
F=\frac{\pi^{2} E I}{(K L)^{2}}
$$

Where I is minimum area moment of inertia of the cross section of the column, in our case

$$
I=\frac{a^{3} b}{12}
$$

In the end

$$
a b \sigma_{c}=\frac{\pi^{2} E \frac{a^{3} b}{12}}{(K L)^{2}} \rightarrow \boldsymbol{L}=\frac{\boldsymbol{\pi}^{2} \boldsymbol{E} \boldsymbol{a}^{2}}{\mathbf{1 2} \sigma_{c}}=\mathbf{2 . 3 7 m}
$$

Answer provided by https://www.AssignmentExpert.com

