## Answer on Question \#68929, Physics / Other

A compound of 10 ml of nitrogen and oxygen mixtured with $30 \mathrm{ml} \mathrm{H}_{2}$ and get $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ and nitrogen gas. if both reactants react properly then what is the molecular formula of compound?

## Solution:

Gases occupying a volume at the same temperature and pressure have the same number of molecules. Hence, we can directly take out the ratio of moles that reacted:

Gas volume Ratio of the nitrogen oxide and $\mathrm{H}_{2}$ is 10:30 or simplified, 1:3.
Hence, the mole ratio of the nitrogen oxide and $\mathrm{H}_{2}$ is 1:3.
Assuming the reactants and products are in gas phase at RTP:

$$
\mathrm{N}_{x} \mathrm{O}_{y}+3 \mathrm{H}_{2} \rightarrow y \mathrm{H}_{2} \mathrm{O}+\frac{x}{2} \mathrm{~N}_{2}
$$

From equation for hydrogen

$$
3 \times 2=y \times 2
$$

Thus,

$$
y=3
$$

For nitrogen

$$
\begin{gathered}
x=\frac{x}{2} 2 \\
x=x
\end{gathered}
$$

Thus, $x$ can be any even number.

$$
x=2
$$

Answer: Dinitrogen trioxide $\mathrm{N}_{2} \mathrm{O}_{3}$

