Question \#68890, Physics / Mechanics | Relativity
Our Addition Problem this week will deal with an asteroid the "size of Texas" heading our way. Our asteroid is heading toward earth at $22,000 \mathrm{mph}$ with a mass of $6.2 \times 1021 \mathrm{~kg}$. Instead of a misfit crew of oil drillers we send a small intrepid spacecraft to nudge it off course. After setting down on the asteroid it will give a constant force of 5.0 N . We only need to change the velocity of the asteroid by $0.30 \mathrm{~cm} / \mathrm{s}$ to have it miss the Earth. How long must the force act on the asteroid to avert disaster?

Solution

$$
\begin{aligned}
& \Delta p=m \Delta v=F \Delta t ; \\
& \Delta t=\frac{m \Delta v}{F} ; \\
& \Delta t=\frac{6.2 \times 10^{21} \times 0.30 \times 10^{-2}}{5.0}=3.7 \times 10^{18} \mathrm{~s}
\end{aligned}
$$

