Answer on Question 68882, Physics, Mechanics | Relativity Question:

A fisherman casts his bait toward the river at an angle of 25° above the horizontal. The bait and hook reach a maximum height of 2.9 m . What was the initial velocity with which the bait was cast? Assume that the fishing line exerts no appreciable drag force on the bait and hook.

Solution:

Let's first find the vertical component of the initial velocity of the bait from the kinematic equation:

$$
v_{y}^{2}=v_{0 y}^{2}+2 g h,
$$

here, $v_{0 y}$ is the vertical component of the initial velocity of the bait, $v_{y}=0$ is the final velocity of the bait at the maximum height, h is the maximum height reached by the bait, $g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration due to gravity (since we take the upwards as the positive direction, the acceleration due to gravity will be with sign minus).

Then, we get:

$$
\begin{gathered}
0=v_{0 y}^{2}+2 g h \\
v_{0 y}=\sqrt{-2 g h}=\sqrt{-2 \cdot\left(-9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 2.9 \mathrm{~m}}=7.54 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

From the other hand, we can write the formula for the vertical component of the initial velocity of the bait as follows:

$$
v_{0 y}=v_{0} \sin \theta,
$$

here, v_{0} is the initial velocity of the bait, θ is the angle above the horizontal.
Then, from this formula we can find v_{0} :

$$
v_{0}=\frac{v_{0 y}}{\sin \theta}=\frac{7.54 \frac{\mathrm{~m}}{\mathrm{~s}}}{\sin 25^{\circ}}=17.84 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Answer:

$$
v_{0}=17.84 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

