A 1500-kg blue convertible is travelling south, and a $2000-\mathrm{kg}$ red sports utility vehicle is travelling west. If the momentum of the system consisting of the two cars is $8000 \mathrm{~kg} \bullet \mathrm{~m} / \mathrm{s}$ directed at 60° west of south, what is the speed of each car?

The momentum of the two car system can be found from equations:

$$
\begin{gathered}
\left\{\begin{array}{c}
\left(m_{1} v_{1}\right)^{2}+\left(m_{2} v_{2}\right)^{2}=p^{2} \\
\cos (60)=\frac{v_{2}}{v}
\end{array}\right. \\
\left\{\begin{array}{c}
\left(m_{1} v_{1}\right)^{2}+\left(m_{2} v_{2}\right)^{2}=p^{2} \\
\frac{1}{2}=\frac{\left(m_{1}+m_{2}\right) v_{2}}{p}
\end{array}\right. \\
v_{2}=\frac{p}{2\left(m_{1}+m_{2}\right)}=\frac{8000 \mathrm{kgm} / \mathrm{s}}{2(1500 \mathrm{~kg}+2000 \mathrm{~kg})} \cong 1.14 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

From the first equation:

$$
\begin{gathered}
v_{1}=\frac{1}{m_{1}} \sqrt{p^{2}-\left(m_{2} v_{2}\right)^{2}} \\
v_{1}=\frac{1}{1500 \mathrm{~kg}} \sqrt{(8000 \mathrm{kgm} / \mathrm{s})^{2}-(2000 \mathrm{~kg} * 1.14 \mathrm{~m} / \mathrm{s})^{2}} \cong 5.11 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Answer: $v_{1} \cong 5.11 \mathrm{~m} / \mathrm{s}, v_{2} \cong 1.14 \mathrm{~m} / \mathrm{s}$

