for 0.500 s? Express your answers in terms of the unit vectors i and j .
i- points in the positive x-axis direction, j - points in the positive y-axis direction.

$$
\begin{gathered}
F(t)=\left(\alpha t^{2}\right) \vec{\imath}+(\beta+\gamma t) \vec{\jmath}=m \vec{a} \rightarrow \vec{a}=\frac{\left(\alpha t^{2}\right) \vec{\imath}+(\beta+\gamma t) \vec{\jmath}}{m} \\
\vec{v}=\int_{0}^{T} \vec{a} d t=\int_{0}^{5} \frac{\left(\alpha t^{2}\right) \vec{\imath}+(\beta+\gamma t) \vec{\jmath}}{m} d t=\frac{1}{m}\left(\frac{\alpha 0.5^{3}}{3}\right) \vec{\imath}+\left(\beta 0.5+\frac{\gamma 0.5^{2}}{2}\right) \vec{\jmath}
\end{gathered}
$$

i- points in the positive x-axis direction

$$
\begin{gathered}
v_{i}=\frac{1}{2} \cdot 25 \cdot \frac{0.0625}{3}=0.26 \frac{\mathrm{~m}}{\mathrm{~s}} \\
v_{j}=30 \cdot 0.5+5 \cdot \frac{0.25}{2}=15.625 \frac{\mathrm{~m}}{\mathrm{~s}}
\end{gathered}
$$

