Answer on Question \#68765-Physics-Mechanics-Relativity

A test tube of mass 0.006 kg and of external dimension 0.02 m floated vertically in water by placing 0.01 kg of mercury at the bottom of the tube. The tube is depressed in a small amount then released. Determine the period of its oscillation

Solution

Total mass is

$$
m=0.006+0.01=0.016 \mathrm{~kg}
$$

External radius is

$$
r=\frac{0.02}{2}=0.01 \mathrm{~m}
$$

The volume of displaced water is

$$
V=y A=y \pi r^{2}
$$

The upthrust on the tube due to the displaced water is

$$
F=\rho g V=\rho g y \pi r^{2}
$$

For simple harmonic motion we have:

$$
F=m \omega^{2} y
$$

Thus,

$$
\omega=\sqrt{\frac{\rho g \pi r^{2}}{m}}
$$

The period is

$$
T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{m}{\rho g \pi r^{2}}}=2 \pi \sqrt{\frac{0.016}{(1000)(9.8) \pi(0.01)^{2}}}=0.453 \mathrm{~s} .
$$

Answer provided by https://www.AssignmentExpert.com

