Answer on Question \#68716, Physics / Electromagnetism

Question:

A particle of M mass and Q charge is thrown to such a area where same gravitational and electric field are situated. What is the way of this particle?

Solution:

Lets assume that the only forces acting on the particle is gravitational and electric forces
So, according to $2^{\text {nd }}$ Newton's law: $M \vec{a}=M \vec{g}+q \vec{E}$
The external force is constant and doesn't depend on coordinate or speed.
During the flight particle will accelerate with $a=\vec{g}+\frac{q \vec{E}}{M}$
If initially it has velocity $\overrightarrow{v_{0}}$, then at a time t , it will have velocity $\vec{v}(t)=\overrightarrow{v_{0}}+\left(\vec{g}+\frac{q \vec{E}}{M}\right) t$ Its displacement vector: $\vec{r}(t)=\overrightarrow{r_{0}}+\overrightarrow{v_{0}} t+\frac{\left(\vec{g}+\frac{q \vec{G}}{M}\right) t^{2}}{2}$

