Answer on Question 68683, Physics, Mechanics, Relativity

Question:

Car cruise down an expressway at $25 \mathrm{~m} / \mathrm{s}$. Engineers want to design an interchange for a deceleration of $-2.0 \mathrm{~m} / \mathrm{s}^{2}$ over 3.0 s .
a) What velocity will cars have at the end of the approach?
b) What minimum approach length will satisfy these requirements?
c) What maximum velocity could a car entering the interchange have and still be able to exit at the intended velocity? (Assume an extreme deceleration of four times the usual rate.)

Solution:

a) We can find the velocity of the car at the end of the approach from the kinematic equation:

$$
v=v_{0}+a t
$$

here, $v_{0}=25 \mathrm{~m} / \mathrm{s}$ is the initial velocity of the car, v is the velocity of the car at the end of the approach, $a=-2.0 \mathrm{~m} / \mathrm{s}^{2}$ is the deceleration of the car and t is the time.

Then, we get:

$$
v=v_{0}+a t=25 \frac{\mathrm{~m}}{\mathrm{~s}}+\left(-2.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 3.0 \mathrm{~s}=19 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

b) We can find the minimum approach length that will satisfy these requirements from the kinematic equation:

$$
d=v_{0} t+\frac{1}{2} a t^{2}=25 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 3.0 \mathrm{~s}+\frac{1}{2} \cdot\left(-2.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot(3.0 \mathrm{~s})^{2}=66 \mathrm{~m} .
$$

c) We can find the maximum velocity of the car from the kinematic equation:

$$
\begin{gathered}
v^{2}=v_{0}^{2}+2 a d, \\
v_{0}=\sqrt{v^{2}-2 a d}=\sqrt{\left(19 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}-2 \cdot\left(-8.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \cdot 66 \mathrm{~m}}=38 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Answer:

a) $v=19 \frac{\mathrm{~m}}{\mathrm{~s}}$.
b) $d=66 \mathrm{~m}$.
c) $v_{0}=38 \frac{\mathrm{~m}}{\mathrm{~s}}$.

Answer provided by https://www.AssignmentExpert.com

