Answer on Question\#68667 - Physics - Mechanics - Relativity

A satellite of mass 3000 kg is orbiting the Earth in a circular path of radius $8.2 \cdot 10^{6} \mathrm{~m}$. Given that the mass the Earth is $5.98 \cdot 10^{24} \mathrm{~kg}$. Find centripetal force acting on the satellite.
Solution. If the satellite moves in circular motion, then the net centripetal force acting upon this orbiting satellite is given by the relationship

$$
F_{n e t}=\frac{M_{s a t} v^{2}}{R}
$$

where $M_{\text {sat }}$ - mass of the satellite, v - velocity of the satellite, R - radius of the orbit.
This net centripetal force is the result of the gravitational force that attracts the satellite towards the central body and can be represented as

$$
F_{\text {grav }}=\frac{G M_{\text {sat }} M_{\text {Earth }}}{R^{2}}
$$

where $G=6.67 \cdot 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}, M_{\text {sat }}=3000 \mathrm{~kg}, M_{\text {Earth }}=5.98 \cdot 10^{24} \mathrm{~kg}, R=8.2 \cdot 10^{6} \mathrm{~m}$.
Since $F_{\text {net }}=F_{\text {grav }}$, the above expressions for centripetal force and gravitational force can be set equal to each other.

$$
F_{\text {grav }}=\frac{6.67 \cdot 10^{-11} \cdot 3000 \cdot 5.98 \cdot 10^{24}}{\left(8.2 \cdot 10^{6}\right)^{2}} \approx 17796 \mathrm{~N}
$$

Answer. 17796 N .

Answer provided by https://www.AssignmentExpert.com

