Answer on Question \#68664, Physics / Mechanics | Relativity

Grains of fine California beach sand are approximately spheres with an average radius of $50 \mu \mathrm{~m}$ and are made of silicon dioxide, which has a density of $2.3 \times 103 \mathrm{~kg} / \mathrm{m} 3$. What mass of sand grains would have a total surface area (the total area of all the individual spheres) equal to the surface area of a cube 0.9 m on an edge?

Solution

$$
\begin{gathered}
r=50 \mu \mathrm{~m} \\
\rho=2.3 \cdot 10^{3} \mathrm{~kg} \cdot \mathrm{~m}^{-3} \\
a=0.9 \mathrm{~m}
\end{gathered}
$$

Surface of the cube is made of 6 squares. Cube surface area is

$$
S=6 a^{2}=6 \cdot 0.9 \cdot 0.9=4.86\left(\mathrm{~m}^{2}\right)
$$

Surface area of a grain of sand is

$$
s=4 \pi r^{2}=3,14 \cdot 10^{-8} \mathrm{~m}^{2}
$$

Number of grains which have the same total surface area as the surface area of a cube is

$$
N=\frac{S}{S}=1.55 \cdot 10^{8}
$$

Mass of a grain is

$$
m_{0}=\rho \cdot 4 / 3 \pi r^{3}=1.20 \cdot 10^{-9} \mathrm{~kg}
$$

Total mass is $m=m_{0} N=0.186 \mathrm{~kg}$

Answer: 0.186 kg

Answer provided by https://www.AssignmentExpert.com

