Answer on Question 68639, Physics, Optics

Question:

An object placed in front of a convex mirror of radius 40 cm produces an erect image which is one-sixth the size of the object. How far is the object from the mirror?

Solution:

We can find the position of the object from the mirror equation:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=-\frac{1}{f^{\prime}}
$$

here, d_{o} is the distance from the object to the mirror, d_{i} is the distance from the image to the mirror and f is the focal length (since we have the convex mirror, the focal length will be with sign minus).

By the definition, the focal length of the curved mirror is half a radius of curvature:

$$
f=\frac{R}{2}
$$

Substituting f into the mirror equation we get:

$$
\frac{1}{d_{o}}+\frac{1}{d_{i}}=-\frac{2}{R} .
$$

From the initial condition of the question we know that the size of the image is onesixth the size of the object:

$$
h_{i}=\frac{1}{6} h_{o} .
$$

Also, we know that:

$$
\frac{h_{i}}{h_{o}}=\frac{-d_{i}}{d_{o}}=\frac{1}{6} .
$$

From this equation we can express d_{o} in terms of d_{i} :

$$
d_{o}=-6 d_{i} .
$$

Let's first substitute d_{o} into the mirror equation and find the distance from the image to the mirror:

$$
\begin{gathered}
-\frac{1}{6 d_{i}}+\frac{1}{d_{i}}=-\frac{2}{R^{\prime}} \\
\frac{5}{6 d_{i}}=-\frac{2}{R^{\prime}} \\
d_{i}=-\frac{5 R}{12}=-\frac{5 \cdot 40 \mathrm{~cm}}{12}=-16.6 \mathrm{~cm}
\end{gathered}
$$

The sign minus indicates that the image is located behind the mirror.
Finally, using the same mirror equation we can find the distance from the object to the mirror:

$$
\begin{gathered}
\frac{1}{d_{o}}=-\frac{2}{R}-\frac{1}{d_{i}} \\
d_{o}=\frac{1}{-\frac{2}{40 \mathrm{~cm}}-\frac{1}{-16.6 \mathrm{~cm}}}=97.6 \mathrm{~cm}
\end{gathered}
$$

Answer:

$d_{o}=97.6 \mathrm{~cm}$.
Answer provided by https://www.AssignmentExpert.com

