Answer on Question 68586, Physics, Other

Question:

A car starts from rest and moves along the x-axis with constant accelerations $5 \mathrm{~m} / \mathrm{s}^{2}$ in $8 s$. If it then continues with constant velocity, what distance will the car covers in $12 s$ since it started from rest?

Solution:

Let's first find the distance covered by the car in $8 s$ from the kinematic equation:

$$
d_{1}=v_{0} t+\frac{1}{2} a t^{2},
$$

here, d_{1} is the distance covered by the car in $8 s, v_{0}=0$ is the initial velocity of the car (since the car starts from rest it will be equal to zero), $a=5 \mathrm{~m} / \mathrm{s}^{2}$ is the acceleration of the car and t is the time.

Then, we get:

$$
d_{1}=\frac{1}{2} a t^{2}=\frac{1}{2} \cdot 5 \frac{m}{s^{2}} \cdot(8 s)^{2}=160 \mathrm{~m} .
$$

We can find the constant velocity of the car after $8 s$ from another kinematic equation:

$$
\begin{gathered}
v=v_{0}+a t, \\
v=a t=5 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot 8 \mathrm{~s}=40 \frac{\mathrm{~m}}{\mathrm{~s}} .
\end{gathered}
$$

Then, we can find the distance covered by the car in the last $4 s$:

$$
d_{2}=v t=40 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 4 \mathrm{~s}=160 \mathrm{~m} .
$$

Finally, we can find the distance covered by the car in $12 s$ since it started from rest:

$$
d=d_{1}+d_{2}=160 m+160 m=320 m .
$$

Answer: $d=320 \mathrm{~m}$.
Answer provided by https://www.AssignmentExpert.com

