Answer on Question 68545, Physics, Other

Question:

A 5.0 kg mass moves along a horizontal surface when connected by a string passing over a pulley to a 2.5 kg mass. If its coefficient of kinetic friction is 0.25 , what is its acceleration and the tension in the string?

Solution:

a) Let $m_{A}=5.0 \mathrm{~kg}$ and $m_{B}=2.5 \mathrm{~kg}$. Applying the Newton Second Law of Motion we get:

$$
\begin{gathered}
\sum F_{x}=m_{A} a_{x}, \\
T-F_{f r}=m_{A} a, \\
T-\mu_{k} m_{A} g=m_{A} a(1) . \\
\sum F_{y}=m_{B} a_{y}, \\
m_{B} g-T=m_{B} a .
\end{gathered}
$$

Let's express T from the equation (1) and substitute it into the equation (2):

$$
\begin{gathered}
T=\mu_{k} m_{A} g+m_{A} a, \\
m_{B} g-\mu_{k} m_{A} g-m_{A} a=m_{B} a, \\
m_{B} g-\mu_{k} m_{A} g=\left(m_{A}+m_{B}\right) a,
\end{gathered}
$$

$$
a=\frac{g\left(m_{B}-\mu_{k} m_{A}\right)}{m_{A}+m_{B}}=\frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}} \cdot(2.5 \mathrm{~kg}-0.25 \cdot 5.0 \mathrm{~kg})}{5.0 \mathrm{~kg}+2.5 \mathrm{~kg}}=1.63 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}
$$

b) Finally, substituting a into the equation for T we get:

$$
T=m_{A}\left(\mu_{k} g+a\right)=5.0 \mathrm{~kg} \cdot\left(0.25 \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}+1.63 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)=20.4 \mathrm{~N} .
$$

Answer:

a) $a=1.63 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}$.
b) $T=20.4 \mathrm{~N}$.

