

Answer on Question #68534, Physics / Mechanics | Relativity

If I was travelling towards a light pulse in opposite direction to its velocity wouldn't length contraction and time dilation make its velocity even bigger than c , for my length measuring rods will become shorter so I will measure more distance travelled by the light and my clocks will run slower so more time for light to travel? I get it when the distance between the pulse and observer is increasing but not the other way.

Solution:

The velocity of the body approaches to the speed of light in vacuum. This is a special relativity.

The speed of the body is always less than the speed of light in vacuum.

Two postulates of special relativity.

First postulate (principle of relativity): The laws of physics are the same in all inertial frames of reference.

Second postulate (invariance of c): The speed of light in free space has the same value c in all inertial frames of reference.

Time dilation (different times t and t' at the same position x in same inertial frame):

$$t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}} \quad (1), \text{ where } v \text{ is the speed of body}$$

Length contraction (different positions x and x' at the same instant t in the same inertial frame):

$$l' = l_0 \sqrt{1 - \frac{v^2}{c^2}} \quad (2), \text{ where } v \text{ is the speed of body}$$

The laws of classical physics (e.g., $l' = vt'$) are not right for special relativity. In this way, the direction of the motion of body does not matter.

Answer provided by <https://www.AssignmentExpert.com>