Answer on Question \#68526-Physics- Mechanics | Relativity

A disc of mass 20 kg and radius 0.15 m mounted on a horizontal cylindrical axle of radius 0.015 m and negligible mass. No frictional losses exist in the rings. Calculate:

1) the moment of inertial of the disk.
2) the angular velocity acquired if the 20 N force is applied for 12 seconds.
3) the kinetic energy of the disc at the end of the 12 seconds.
4) the time required to bring disc to rest if a braking force of 1 N were applied tangentially to its rim.

Solution

1) The moment of inertial of the disk is

$$
I=\frac{1}{2} M R^{2}=\frac{1}{2}(20)(0.15)^{2}=0.225 \mathrm{kgm}^{2}
$$

2)

$$
\beta=\frac{\tau}{I}=\frac{F r}{I}
$$

The angular velocity acquired if the 20 N force is applied for 12 seconds is

$$
\omega=\beta t=\frac{F r}{I} t=\frac{(20)(0.015)(12)}{0.225}=16 \frac{\mathrm{rad}}{\mathrm{~s}}
$$

3) The kinetic energy of the disc at the end of the 12 seconds is

$$
K=\frac{1}{2} I \omega^{2}=\frac{1}{2}(0.225)(16)^{2}=28.8 J
$$

3) The time required to bring disc to rest if a braking force of 1 N were applied tangentially to its rim is

$$
\begin{gathered}
\beta^{\prime}=\frac{\tau^{\prime}}{I}=\frac{F^{\prime} R}{I} \\
t=\frac{\omega}{\beta}=\frac{\omega I}{F^{\prime} R}=\frac{(16)(0.225)}{(1)(0.15)}=24 \mathrm{~s}
\end{gathered}
$$

Answer provided by https://www.AssignmentExpert.com

