Answer on Question \#68519, Physics / Mechanics | Relativity

Two blocks of mass 300 g \& 200 g are moving toward each other along a horizontal frictionless surface with velocities of $50 \mathrm{~cm} / \mathrm{s}$ and $100 \mathrm{~cm} / \mathrm{s}$ respectively. Find the loss of kinetic energy during the collision.

Solution:

The law of conservation of momentum for a system of two bodies

$$
\begin{gathered}
m_{1} v_{1}+m_{2} v_{2}=\left(m_{1}+m_{2}\right) u \\
u=\frac{m_{1} v_{1}+m_{2} v_{2}}{m_{1}+m_{2}} \\
u=\frac{0.3 \mathrm{~kg} \times 0.5 \mathrm{~m} / \mathrm{s}+0.2 \mathrm{~kg} \times 1 \mathrm{~m} / \mathrm{s}}{0.3 \mathrm{~kg}+0.2 \mathrm{~kg}} \\
u=0.7 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

Define the difference of the kinetic energy of two bodies before and after the interaction

$$
\begin{gathered}
\Delta E=\left(\frac{m_{1} v_{1}^{2}}{2}+\frac{m_{2} v_{2}^{2}}{2}\right)-\frac{\left(m_{1}+m_{2}\right) u^{2}}{2} \\
\Delta E=\left(\frac{0.3 \mathrm{~kg} \times\left(0.5 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2}+\frac{0.2 \mathrm{~kg} \times\left(1 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2}\right)-\frac{(0.3 \mathrm{~kg}+0.2 \mathrm{~kg})\left(0.7 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2} \\
\Delta E=0.015 \text { Joule }
\end{gathered}
$$

Answer: 0.015 Joule

Answer provided by https://www.AssignmentExpert.com

