Answer on Question 68495, Physics, Mechanics, Relativity

Question:

A body hangs from a spring balance supported from the roof of an elevator. If the elevator has an upward acceleration of $3 \mathrm{~m} / \mathrm{s}^{2}$ and the balance reads 50 N , what is the true weight of the body?
a) 38.3 N
b) 28.3 N
c) 39.8 N
d) 50.0 N

Solution:

Let's apply the Newton's Second Law of Motion:

$$
\sum F_{y}=m a_{y}, \quad T-m g=m a,
$$

here, T is the tension in the spring directed upward (or the read of the spring balance), $m g$ is the force of gravity directed downward, a is the acceleration of an elevator.

So, we get:

$$
T=m(g+a) .
$$

From this formula we can find the mass of the body:

$$
m=\frac{T}{(g+a)}
$$

Finally, we can calculate the true weight of the body:

$$
W=m g=\frac{T g}{(g+a)}=\frac{50.0 \mathrm{~N} \cdot 9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}+3.0 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}=38.3 \mathrm{~N} .
$$

Answer: a) 38.3 N .

