## Answer on Question \#68486, Physics / Electromagnetism

A 20.0 m long wire is carrying a 150.0 mA current parallel to a second wire that is extremely long which carries a current of 250.0 mA in the same direction. These wires are placed 40.0 cm apart in a 5.5 T magnetic field that is directed into the page. Calculate the magnetic force on each wire and indicate the direction of the force. Each of these wires would generate a smaller magnetic field, indicate the direction this magnetic field would travel between the wires.

## Solution:

Magnetic force:
$F=\frac{\mu_{0} \mathrm{I}_{1} \mathrm{I}_{2}}{2 \pi \mathrm{r}} \mathrm{L}(1)$, where $\mu_{0}=4 \pi 10^{-7} \mathrm{~T} \times \mathrm{m} \times \mathrm{A}, \mathrm{I}_{1}=150.0 \times 10^{-3} \mathrm{~A}, \mathrm{I}_{2}=250.0 \times 10^{-3} \mathrm{~A}, \mathrm{r}=0.4 \mathrm{~m}, \mathrm{~L}=20.0 \mathrm{~m}$ Of (1) $\Rightarrow \mathrm{F}=3.75 \mathrm{~N}$

## Answer:

3.75 N
attraction

