Question: An ideal monatomic gas undergoes an adiabatic compression from state 1 with pressure p1=1 atm, volume V1=8 L, and temperature T1=300 K to state 2 with pressure $\mathrm{p} 2=32 \mathrm{~atm}$, volume $\mathrm{V} 2=1 \mathrm{~L}$
(a) What is the temperature of the gas in state 2?
(b) How many moles of gas are present?
(c) What is the average translational kinetic energy per mole before and after the compression?
(d) What is the ratio of the squares of the rms speeds before and after the compression?
(e) If we do not know that the ideal gas here is monatomic, demonstrate that the gas is truly monatomic.

Solution:
a) In general for the gas we can write

$$
\frac{P V}{T}=\text { const }
$$

So

$$
\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}} \rightarrow \boldsymbol{T}_{2}=T_{1}\left(\frac{P_{2} V_{2}}{P_{1} V_{1}}\right)=300 *\left(\frac{32}{8}\right)=\mathbf{1 2 0 0} \mathrm{K}
$$

b) It is known that

$$
P V=v R T
$$

Where v is a number of moles and R is a gas constant. Considering that 1atm is equal to $10^{5} \mathrm{~Pa}$ and $1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$

$$
P_{1} V_{1}=v R T_{1} \rightarrow \boldsymbol{v}=\frac{P_{1} V_{1}}{R T_{1}}=\left(10^{5} * 8 * 10^{-3}\right) /(8.31 * 300)=\mathbf{0} .321 \text { mole }
$$

c) The average translational kinetic energy per mole for a monoatomic gas is calculated as

$$
K=\frac{3 R T}{2}
$$

So

$$
\begin{aligned}
& \boldsymbol{K}_{\mathbf{1}}=\left(\frac{3}{2}\right) R T_{1}=3 * 300 * \frac{8.31}{2}=\mathbf{3 7 3 9 . 5} \mathrm{J} \\
& \boldsymbol{K}_{\mathbf{2}}=\left(\frac{3}{2}\right) R T_{2}=3 * 1200 * \frac{8.31}{2}=\mathbf{1 4 9 5 8} \mathrm{J}
\end{aligned}
$$

d) The kinetic energy of the particle in the gas can be calculated as

$$
\frac{m v_{r m s}^{2}}{2}=\frac{3}{2} k_{b} T
$$

So

$$
\frac{v_{r m s 1}^{2}}{v_{r m s 2}^{2}}=\frac{T_{1}}{T_{2}}=\frac{300}{1200}=\frac{\mathbf{1}}{\mathbf{4}}
$$

e) If the process is adiabatic then

$$
\begin{gathered}
P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma} \rightarrow\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=\frac{P_{2}}{P_{1}} \\
8^{\gamma}=32 \\
\left(2^{3}\right)^{\gamma}=2^{5} \\
\gamma=\frac{\mathbf{5}}{\mathbf{3}}
\end{gathered}
$$

A value which corresponds to an ideal monoatomic gas

