## Answer on Question 68433, Physics, Mechanics, Relativity

## Question:

A car is running from $A$ to $B$ of the speed $20 \mathrm{~km} /$ hours and return come back of the speed 30 $\mathrm{km} /$ hours. During the whole journey what will be the average speed of the car?

## Solution:

By the definition, the average speed is the total distance traveled divided by the total time:

$$
v_{a v g}=\frac{d_{t o t}}{t_{t o t}} .
$$

Let the distance between A and B is $d$. Then, the total distance traveled by the car during the whole journey is equal to

$$
d_{t o t}=d_{1}+d_{2}=d+d=2 d
$$

Let's first find the time that the car needs to travel from A to B at $20 \mathrm{~km} / \mathrm{h}$ :

$$
t_{1}=\frac{d_{1}}{v_{1}}=\frac{d}{20 \frac{\mathrm{~km}}{\mathrm{~h}}}
$$

Similarly, we can find the time that the car needs to return come back at $30 \mathrm{~km} / \mathrm{h}$ :

$$
t_{2}=\frac{d_{2}}{v_{2}}=\frac{d}{30 \frac{\mathrm{~km}}{\mathrm{~h}}} .
$$

Then, we can find the total time for the whole journey:

$$
t_{t o t}=t_{1}+t_{2}=\frac{d}{20 \frac{\mathrm{~km}}{\mathrm{~h}}}+\frac{d}{30 \frac{\mathrm{~km}}{\mathrm{~h}}}=\frac{3 d+2 d}{60 \frac{\mathrm{~km}}{\mathrm{~h}}}=\frac{5 d}{60 \frac{\mathrm{~km}}{\mathrm{~h}}}=\frac{d}{12 \frac{\mathrm{~km}}{\mathrm{~h}}} .
$$

Finally, we can find the average speed of the car during the whole journey:

$$
v_{\text {avg }}=\frac{d_{t o t}}{t_{t o t}}=\frac{2 d}{\frac{d}{12 \frac{\mathrm{~km}}{\mathrm{~h}}}}=2 \cdot 12 \frac{\mathrm{~km}}{\mathrm{~h}}=24 \frac{\mathrm{~km}}{\mathrm{~h}}
$$

## Answer:

$$
v_{a v g}=24 \frac{\mathrm{~km}}{\mathrm{~h}} .
$$

