Answer on Question # 68424 - Physics / Other

Check whether the force $\mathbf{F} = yz\mathbf{i} + zx\mathbf{j} + xy\mathbf{k}$, (where \mathbf{i} , \mathbf{j} and \mathbf{k} are unit vectors) is conservative or not.

Solution

For the conservative force the curl of ${f F}$ is the zero vector. Let's check it out

$$\nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ F_x & F_y & F_z \end{vmatrix} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ yz & zx & xy \end{vmatrix} = \\ = \mathbf{i} \left(\frac{\partial}{\partial y} xy - \frac{\partial}{\partial z} zx \right) + \mathbf{j} \left(\frac{\partial}{\partial z} yz - \frac{\partial}{\partial x} xy \right) + \mathbf{k} \left(\frac{\partial}{\partial x} zx - \frac{\partial}{\partial y} yz \right) = \\ = \mathbf{i} (x - x) + \mathbf{j} (y - y) + \mathbf{k} (z - z) = \mathbf{0}.$$

So the force is conservative.

Answer: conservative.

Answer provided by https://www.AssignmentExpert.com