Answer on Question \# 68424 -Physics / Other

Check whether the force $\mathbf{F}=y z \mathbf{i}+z x \mathbf{j}+x y \mathbf{k}$, (where \mathbf{i}, \mathbf{j} and \mathbf{k} are unit vectors) is conservative or not.

Solution

For the conservative force the curl of \mathbf{F} is the zero vector. Let's check it out

$$
\begin{gathered}
\boldsymbol{\nabla} \times \mathbf{F}=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right|=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\partial & \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\frac{\partial z}{\partial z} & z x & x y
\end{array}\right|= \\
=\mathbf{i}\left(\frac{\partial}{\partial y} x y-\frac{\partial}{\partial z} z x\right)+\mathbf{j}\left(\frac{\partial}{\partial z} y z-\frac{\partial}{\partial x} x y\right)+\mathbf{k}\left(\frac{\partial}{\partial x} z x-\frac{\partial}{\partial y} y z\right)= \\
=\mathbf{i}(x-x)+\mathbf{j}(y-y)+\mathbf{k}(z-z)=\mathbf{0} .
\end{gathered}
$$

So the force is conservative.
Answer: conservative.
Answer provided by https://www.AssignmentExpert.com

