Answer on Question \#68396 - Physics - Mechanics | Relativity

A rope suspended from a ceiling supports an object of weight W at its opposite end. Another rope tied to the first at the middle is pulled horizontally with a force of 30 N . The junction P of the ropes is in equilibrium. calculate the weight W and the tension T in the upper part of the first rope.
a) 40.5 N and 52.5 N
b) 16.6 N and 27.3 N
c) 30.4 N and 53.7 N
d) 27.2 N and 39.2 N

Solution.

Figure 1
The equilibrium condition for the point P is
$\overrightarrow{T_{1}}+\overrightarrow{T_{2}}+\vec{W}=0 ; \overrightarrow{T_{1}}+\overrightarrow{T_{2}}=-\vec{W}=\overrightarrow{P K} ;$
We use the Pythagorean theorem for a right triangle PKT_{1} (Fig. 1)
$T_{1}{ }^{2}+W^{2}=T_{2}{ }^{2} ; T_{1}=30 N ; T_{2}{ }^{2}-W^{2}=900 ;$
We now verify each of the answers:
a) $52.5^{2}-40.5^{2}=2756.25-1640.25=1116$
b) $27.3^{2}-16.6^{2}=745.29-275.56=469.73$
c) $53.7^{2}-30.4^{2}=2883.69-924.16=1959.53$;
d) $39.2^{2}-27.2^{2}=1536.64-739.84=796.8$;

Thus, all the answers are incorrect.

Answer:

There is no right answer
Answer provided by https://www.AssignmentExpert.com

