

Answer on Question # 68393-Physics / Quantum Mechanics

Suppose that the momentum of a certain particle can be measured to an accuracy of one part in a thousand, Determine the minimum uncertainty in the position of a particle if the particle is (a) a 5×10^{-3} kg mass moving with a speed of 2 m/s, (b) an electron moving with a speed of 1.8×10^8 m/s .

Solution

a) The momentum of the particle $p = mv = 5 \times 10^{-3} \times 2 = 1 \times 10^{-2}$ kg $\cdot \frac{\text{m}}{\text{s}}$.

So uncertainty in the momentum of a particle $\Delta p = \frac{1}{1000} p = 1 \times 10^{-5}$ kg $\cdot \frac{\text{m}}{\text{s}}$.

From the Heisenberg's uncertainty principle

$$\Delta p \Delta x \geq \frac{\hbar}{2}$$

the minimum uncertainty in the position of a particle

$$\Delta x = \frac{\hbar}{2\Delta p} \approx \frac{1 \times 10^{-34}}{2 \times 10^{-5}} = 5 \times 10^{-28} \text{ m.}$$

b) The momentum of the relativistic electron

$$p = \frac{mv}{\sqrt{1 - \frac{v^2}{c^2}}} = \frac{9.1 \times 10^{-31} \times 1.8 \times 10^8}{\sqrt{1 - \frac{(1.8 \times 10^8)^2}{(3 \times 10^8)^2}}} = \frac{16.38 \times 10^{-23}}{0.8} \approx 2 \times 10^{-22} \text{ kg} \cdot \frac{\text{m}}{\text{s}}$$
$$\Delta p = \frac{1}{1000} p = 2 \times 10^{-25} \text{ kg} \cdot \frac{\text{m}}{\text{s}}$$

Finally

$$\Delta x = \frac{\hbar}{2\Delta p} \approx \frac{1 \times 10^{-34}}{4 \times 10^{-25}} = 2.5 \times 10^{-10} \text{ m} = 2.5 \text{ \AA.}$$

Answer a) 5×10^{-28} m, b) 2.5×10^{-10} m.

Answer provided by <https://www.AssignmentExpert.com>